Intro. to ODEs

Quiz 13 Solutions
Find and classify all equilibria for the 2×2 non-linear system below.

$$
\begin{aligned}
& \frac{d x}{d t}=(y-1)(y-x-2) \\
& \frac{d y}{d t}=y(4-y-x)
\end{aligned}
$$

For equilibria, we have

$$
\begin{array}{r}
(y-1)(y-x-2)=0 \longrightarrow y=1, y=x+2 \\
y(4-y-x)=0 \longrightarrow y=0, y=4-x
\end{array}
$$

which gives $(x, y)=(3,1),(-2,0)$, and $(1,3)$.
The matrix of partial derivatives we need to consider is

$$
L(x, y)=\left[\begin{array}{cc}
-(y-1) & 2 y-x-3 \\
-4 & 4-x-2 y
\end{array}\right]
$$

which has a trace of $\tau(x, y)=5-x-3 y$ and determinant of

$$
\Delta(x, y)=4 y^{2}-9 y-x+4
$$

(These functions are only significant at the equilibria.)

- $(3,1): \tau=-1, \Delta=-4$

So, $(3,1)$ is an unstable saddle point.

- $(-2,0): \tau=7, \Delta=6, \Delta<\frac{1}{4} \tau^{2}$

So, $(-2,0)$ is an unstable node.

- $(1,3): \tau=-5, \Delta=12, \Delta>\frac{1}{4} \tau^{2}$

So, $(0,0)$ is an asymptotically stable spiral point.

